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ABSTRACT

41

Spatial and autocorrelation structures are hypothesized to be important components in addition to the
hydrological variables to describe the state of an aquatic phenomenon indexed by a binary response variable.
Two models that incorporate spatial and autocorrelation parameters to an ordinary logistic model (autologistic)
are proposed. An algorithm similar to the backfitting routine is proposed. The ordinary logistic model is used
as a benchmark for comparison. Results indicate that the autologistic model is superior to the other two models
in terms of its ability to recognize the state of a binary event. Inclusion of the spatial parameter in a logistic
model is a significant improvement in the prediction of binaryevents.

KEY WORDS AND PHRASES: autocorrelation parameter, backfitting algorithm, binary response variable,
harmful algal bloom (HAB), maximum pseudolikelihood, samplingstations, spatial parameter

1. INTRODUCTION

Harmful algal bloom (HAB) is the sudden increase in population of algae that produces
toxins harmful to human as well as health of other organisms. Red tide (bloom of
Pyrodinium Sp.) is a type of HAB very common in tropical waters. Incidence of red tide has
drawn attention of researchers due to the hazards that it posed on the consumers of marine
products. Monitoring is an essential component of a mitigation scheme for this phenomenon.
There are three objectives of such monitoring: (1) to develop an early warning system on the
presence of harmful algae; (2) to increase scientific understanding of the phytoplankton
community; and (3) to assure that only safe shellfish are harvested to avoid health hazard for
consumers.

This paper focuses on the development of a stochastic model to describe red-tide
phenomenon and other HAB conditions. Existing methods for modeling aquatic species use
the density or counts as the dependent variable. The behavior of-the algal community is so
volatile that their number at any point becomes unpredictable. From barely nil count, the
number of cells could suddenly increase tremendously and just as suddenly drop to low level
afterwards. These ridges in the frequency distribution of cell counts prompt the question of
aptness of count data in modeling algal bloom. An indicator of "bloom" or "no bloom" of the
organism could be a better indicator of the state of the algal community. The use of a binary
response variable takes into account the abrupt changes in count data. Moreover, because of
circulation and mixing in an aquatic environment, sampling stations are not necessarily
independent. Hence, structure of dependence between sample stations should be integrated
into the model to better explain the phenomenon. Since data are taken over a specified period
of time, autocorrelation structure should also be considered .
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Several kinds of statistical models have been used to explain a binary response variable. For
example, binary responses, denoted by y, can be related to some covariates through a logistic
regression model. Given a set of k explanatory variables (X"X2,,,,,Xk)' the logistic

regression model utilizes the relationship y =logit(p) =!(Xjp) + E as the description of the

systematic component of the response y. Here pis P(y=I), the cs are zero mean uncorrelated
random variables with a common variance and !(Xjp) is a known function! of the points

Xi'S and parameters p. Bonney(1987) fitted the logistic regression model for dependent
binary observations and used regressive logistic model. Autologistic model (Besag, 1972)
was proposed as a generalization of the standard logistic model for dependent binary data.
Wu and Huffer (1997) used autologistic regression for modeling the presence or absence of
plant species in terms of climate variables such as temperature and rainfall and taking into
account the terms involving first-order neighborhood system, that is, using only the values at
the four sites to predict the values of the central site. Investigation was focused on the
performance of three estimation methods, the coding method (COD), maximum pseudo­
likelihood method (MPL) and Markov Chain Monte Carlo method (MCMC). Gumpertz, et al.
(1997) investigated the autologistic model in predicting the presence or absence of a disease
in an agricultural field based on soil variables. The parameters were estimated using
maximum pseudo-likelihood method.

Models and analyses that account for spatial heterogeneity have gained much attention in
analyzing field data. Cressie (1993) explained that data close together in space are most
likely to be correlated; thus, statistical independence can no longer be invoked. For example,
nearest-neighbor methods for analyzing agricultural field trials indirectly attempted to take
spatial dependence into account by using the residual from neighboring plot as covariates
(Cullis and Gleeson, 1991).

In business and economics, many regression applications involve time series. For such data,
the assumption of uncorrelated or independent error terms is often not appropriate.
Furthermore, it is a known fact in time-series analysis that data close together in time usually
exhibit higher dependence than those farther apart. When dependence over time prevails,
models for conditional distribution of YI given YI_' , YI-2, ... , y, may be more appropriate
(Liang and Zeger, 1991). In this same context, this paper formulates a binary model that
incorporates dependence in terms of spatially correlated errors and other environmental
covariates. Grobbelaar (1990) postulated that a deterministic model is not appropriate for
biological phenomena especially for phytoplankton productivity in turbid water.

The determination of a suitable methodology for the estimation of the parameters is another
issue discussed in this paper. Specifically, the performance of a procedure similar to the
backfitting algorithm on the proposed models will be explored with phytoplankton blooms in
mind.

In the next section we describe the proposed models. In Section 3, we briefly discuss the
proposed estimation procedure. Section 4 discusses how the red-tide data was simulated.
Section 5 demonstrates the predictive ability of the model; and section 6 presents the
conclusions.

...
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2. THE PROPOSED MODELS
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Let X denote the nxp matrix of the hydrological variables used as covariates for the HAB

phenomenon, Yijr = 1 and Yijr =0 denote the response variable for "bloom" and "no bloom"

at time t in site ij, respectively, and Yi-I,j,t. Yi+l.j,l' Yi,j-I,I' Yi";+I.r denote the first-order

neighborhood sites.

Suppose the location of the sampling stations can be mapped into a rectangular lattice where
each site has coordinate (iJ) that specifies the row and the column of the lattice at any time t

(Figure 1). Each circle represents the location where the binary response variable Yiil was

measured.

Figure 1. Rectangular Lattice Design

Given a specific site ij at time t, the first-order neighbors can be illustrated by Figure 2.o represents the neighbor of a given specific response variable.

Figure 2. First-Order Neighborhood System

For binary response Yijl' suppose it depends on the observed states of the first-order
neighboring sites, on p environmental covariates and on random error following either
uncorrelated or a first-order autoregressive process (AR(l ». We may express the response

variable aSYijl =9t(f(xijr.Pr)g{YN,O).Gr), i.e., Yijr is a function of f(X.P).g{YN'O) and

G, . The error terms G, can be uncorrelated or autocorrelated. For this paper, only

autoregressive model of order 1 will be explored. jtx, p) is a known function of the p

environmental covariates, g{yN .0) is also a known function of the first-order neighboring

sites, P and 0 are vectors of unknown parameters and yt, I =1,2,3,4 is an indicator
I
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function (bloom/no bloom) of the first-order neighborhood of site ij at time 1. In this paper,
4

the neighborhood function is yt =I yt, the sum of all first-order neighborhood values.
/=\

We shall investigate two models and an estimation procedure using the simulated data on
phytoplankton bloom. The proposed models are as follows:

Modell: Logistic Model with Spatial Parameter
_ exp(Xp) !it

y iit - () +YN e+Cijt. l+exp Xp
(1)

Model 2: Auto-Logistic Model

exp(Xp + yte)
y .. = ( )+c··1

!II 1+ exp xp + yte !I
(2)

For modell, y depends on the environmental variables X through a logistic function but is a
linear function of its neighborhood values. The second model is an autologistic model
(Besag, 1972) wherein y is a logistic function in X and the neighborhood values.

To describe the state of red tide phenomenon, a binary response is more appropriate. It takes
into account the abrupt changes in the data on cell counts. The proposed models are different
from the ordinary logistic model in that spatial structure is incorporated through the
neighborhood values. Recall the ordinary logistic model given by the equation:

exp(Xp)
y .. = () +c··u l+exp Xp u'

It is speculated that incorporating the spread of the blooming episode or including a spatial
structure in the model would increase its predictive ability. Since data are taken over a
specified period of time, autocorrelation structure should also be considered. The proposed
models may also incorporate AR(I) error terms. Modell was formulated to be a simpler
alternative model over Model 2 for easier interpretation of the spatial dimension of the
phenomenon.

3. THE PROPOSED ESTIMATION PROCEDURE

An iterative fitting procedure is proposed in the estimation of the parameters on the two
models. The procedure is similar to that of Speckman's approach as cited by Heckman
(1988). Speckman's approach to estimating the parameter 13 for a semiparametric model
defined by Yi =XJ3 + g(Ii) + e, uses a combination of smoothing and regression.

Speckman used a fixed width normal kernel smoother.

This procedure is also similar to the backfitting algorithm for additive models of Hastie and
Tibshirani (1990). In Hastie and Tibshirani (1990), the error terms are assumed to be
uncorrelated with mean 0 and common variance ci. In the proposed models, we also
investigate models with AR(1) error terms, i.e, ct =oe.; + a

l
where a, is the usual white

noise term and given the location (i,j). This condition will pose no problem since the paper
will deal only with the computational aspects of the algorithm and will not make inferences
regarding statistical properties of the estimates.

..
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Suppose the binary response variable for all sites ij at time t, environmental covariates X and

the sum of the first-order neighborhood system yt in (Equation I) are given. The general

idea of the estimation procedure for Model I is to alternately .estimate the parameters
corresponding to the environmental covariates (the p 's) and the parameters corresponding to

the spatial dimension «() and the time dimension «(f), as defined in the model with AR(I)
error above. The parameters p are estimated using the logistic regression model

Y;j, = exp((P)r ':,'/ where the component G; will consist of both the autocorrelated error
, 1+exp Xp ,

terms and the component attributable to the neighborhood values. Define the resulting

. I ~ A exp Xp h"1
residua s as eii/ =Yi,'/ - Yiit' where Yi,'/ = A' Note that t ese residuals WI I

. ,. . I +exp Xp
comprise both the error components Gt and the component attributable to the neighborhood

values.

Another possible contribution to the observed residuals may come from some other
systematic inadequacies of the predictor variables X and a misspecification of the functional
link connecting the response variable to the independent variables. However, suppose that
the e, 's are composed of neighborhood values and G, only. The spatial and autocorrelation

parameters are then estimated by regressing the partial residuals e(i/ on the neighborhood

values and on AR( I) error term, that is a model given by eijt = yt () + Gijl or

e ij l =yt() + ¢Gijt-l +aijl is fitted. Estimates of the parameters ()and ¢ are obtained and these

in tum yield estimates of E; and is denoted by eij, =yt iJ + ~ijt-l .

The variable Yiit *=Yijt - eijt is then defined. This new variable Yt *, which is no longer

dichotomous or binary, is then regressed on the components of X using non-linear regression
pc+1 pc

routine until convergence, Convergence IS achieved when So 0.001 ,pc
()c+1 _ ()C ¢c+1 ¢c
---So 0.001 and So 0.001 where C IS the iteration number. Figure 3

()C ¢c

summarizes the steps of the algorithm.
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Figure 3. Estimation Algorithm ofModel 1: Yiit = eXP(1fJ) ) +y~e+eijt
. 1+ exp XfJ

For the r" iteration.,
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exp(XfJ) (r) A

y .. = +e!it => Yijt
!It 1+ exp(XfJ)

.L
Define the residual

eiit =Yiil - Yiil

•
Fit _ to ¢ Aeijt - YN + eiit-l + a!it => eiit

•Define a new variable
•Yiil =Yiil - eiil•

Fit /. = exp(XfJ) (r+l) A

!It 1+ exp(XfJ)
+e!it =>new Yijt

.~

The estimation procedure for Model 2 follows the same idea as Model 1 except that the
effects of both the environmental and neighborhood variables are removed simultaneously.
For Model 2, the initial environmental parameters p, and spatial parameter e are estimated
using a method of maximum pseudolikelihood. Maximization of the pseudolikelihood
function as were the true likelihood function involves fitting the autologistic model. As cited
by Gumpertz, et. al. (1997), the standard errors that are printed out by ordinary logistic
regression software are not appropriate for correlated data, and the usual likelihood
ratio-type statistics do not have asymptotic chi-square distributions. Again, this would not be
a cause for concern, since the focus of the paper is on the computational aspects of the
algorithm and not on the statistical properties of the estimates. Figure 4 summarizes the
estimation algorithm for Model 2.

•
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... exp(X,8 + ytO)
Figure 4. Estimation Algorithm ofModel 2: Yijt = '. t .. ) + Eijr

1+ exp\X,8 + y~ f)

In the r1h iteration,

. _ exp(X,8 + yt f) ) (r) A

FltYijt - )(:,8") +Eijt => Yiit1+ exp X + y~ f) .

+
Define the residual

U
elit =YUt - Ylit

N ~T
I Fit eiit =GUt-I; + aiit
L

C ~
0
N Define a new variable
v •
E Ylit =Yiit - elit
R

+G
E

• _ exp(X,8 + yt f)) (r+l)N
Fitc Yijt - ( .. ) + E

E
1+ exp X,8 + y~ f) v'
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4. DATA SIMULATION
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Most time series on red tide phenomenon are short. This is because collection of indicators
reflecting its state and measurement of different hydrological variables are expensive and
time consuming. There is an actual data on the red time phenomenon but due to substantial
number of missing data points, simulation was resorted in verifying the models and the
estimation procedure. The 4-year data collected by a red tide monitoring and research project
in Carigara Bay, Leyte, Philippines (Abuso, et. aI.,1997) was used as a priori information for
this study. Different spatial and autocorrelation structures were incorporated during the
generation of data.

In this section, we shall discuss the procedure on how the data was simulated with the
Carigara Bay red tide data set serving as the a priori information.

The procedure consists of the following steps:
Step 1. Compute the mean and standard deviation of the Carigara Bay red tide

hydrological variables (X's) and check for seasonality.
Step 2. Fit a logistic regression model on the given data and use the parameter

estimates (,8' s) as initial inputs for the data simulation.
Step 3. Generate the X 's and the error terms (e's). Introduce seasonality to those X 's

identified in step 1. '

Step 4. Given values for ,8 's, X 's and e's generate the response variable yUt.
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Step 5. Recode Y/~t to zero or one depending on the choice of bloom scenario.

Step 6. Assign the first-order neighborhood values YN at each site.
I

Step 7. Given values for p 's, X 's , e 's and YN, generate another set of response

variable denoted by Yijt.

Step 8. Recode YUt to zero or one depending again on the choice of bloom scenario.

•

The idea in steps 1 to 8 is to generate a binary variable that is related to the X 's through
Modell or Model 2. Certain spatial and autocorrelation structure for Yijt and the associated

error terms are also considered in the simulation.

5. lRlESULTS AND DISCUSSIONS

Three blooming scenarios were considered for the two models (10%, 20% and 50% of the
data points are in bloom status). Three sets of values for the environmental parameters (A, B
and C from Table 1) were used as inputs in the simulation. Thirty-six (36) cases were
investigated to represent different values of the spatial parameter (8 =0.8, 0.5 and 0.2) and
autocorrelation parameter (~= 0.6,0.4,0.1 including uncorrelated error term) for each of the
parameter values in Table 1.

Table 1. Environmental Parameter Values Used
Parameters A* B* C*

Po -30.8835 -30.8835 -30.8835

PI 0.1960 0.0571 0.3349

pz 0.3072 0.1108 0.5036

P3 1.3673 1.0427 1.6919

B4 0.9702 0.5328 1.4076

B5 0.7708 0.08 1.4616

*A- based on logistic regression fromactual red tide data
*B- standarderror subtracted from the estimates in A
*C- standard error added to the estimates in A

Model sensitivity and specificity were examined to assess the models' predictive efficiency.
Given a "bloom" event, sensitivity is the conditional probability that the model will correctly
classify the event. On the other hand, specificity is the conditional probability that the model
will correctly classify a "no bloom" event. Sensitivity and specificity should preferably be
close to 1 or 100% but inherent relationship between the two types of errors would push the
decision-maker to compromise. Depending on the object of the study, one may favor
sensitivity at the expense of specificity or vice versa.

Table 2 summarizes the specificity and sensitivity for the logistic model, Modell and Model
2 across all different input values of the environmental, spatial, autocorrelation and cut-off
values. The cut-off values used for the prediction of the response variable are 0.4, 0.5 and
0.6.

Observe that on the average, the specificity of the ordinary logistic model increases as the
bloom episode becomes more frequent while for Models 1 and 2, specificity decreases. On
the average, models 1 and 2 exhibits higher specificity in case of a less frequent bloom
episode. As the bloom episodes occur more frequently, ordinary logistic model becomes
comparable to models 1 and 2. This is to be expected since environmental parameters change
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significantly during the blooming episodes. Thus given the X's, it is not difficult to identify
non-bloom events if almost every other point represents a "no bloom" event.

Table 2. Specificity and Sensitivity Rates

N: Number of SilllUIatcd DataSetMax: Maximum ProportionMill: Minimum Proportion

Specificity Sensitivity CorrectClassification (%)

Model Statistics BloomScenario Bloom Scenario Bloom Scenario
10% 20% 50% 10% 20% 50% 10% 20% 50%

Min 30 33 50 56 54 44 34 39 48

Logistic Max 38 41 52 68 63 52 40 44 50
Mean 34 37 50 62 58 48 37 37 49

N 27 27 27 27 27 27 27 27 27
Min 57 55 41 28 32 42 ~6 53 48

Modell Max 72 69 64 49 51 56 96 63 55
Mean 65 62 54 39 41 49 62 58 51

N 108 108 108 108 108 108 108 108 108
Min 60 57 31 25 28 44 58 54 48

Model 2 Max 70 69 57 45 47 72 66 62 55
Mean 65 62 50 34 39 51 ,62 57 51

N 108 106 108 108 106 108 108 108 108
.. . ,

On the other hand, notice that on the average, the sensitivity of Models I and 2 increases as
the frequency of bloom episode becomes abundant. However, the ordinary logistic model
experiences a decreasing sensitivity property as bloom episode become more frequent. The
result implies that Models I and 2 exhibit higher sensitivity as bloom episodes becomes more
frequent. Therefore, as far as sensitivity property is concerned, the two proposed models are
superior over the ordinary logistic model.

The autologistic model (Model 2) and the logistic with spatial parameter (Model I) exhibit
superiority in terms of its ability to classify binary events. On the average (across all bloom
scenarios), the ordinary logistic model can correctly classify events up to 45%. The
autologistic model can correctly classify events by about 61 %. Similar observation is noticed
for Model I. Thus inclusion of spatial parameter to the logistic model results improvement in
its ability to classify binary events. '

6. CONCLUSIONS

An estimation procedure is applied to two models, which are the logistic model with spatial
parameter (Model I) and the autologistic model (Model 2). Different scenarios were
generated and different set of parameter input values were used in the simulation of data to
investigate the two models.

The model performance or the predictive efficiency of the models is examined. Predictive
efficiency was measured through the model's ability to correctly classify a "no bloom' event
(specificity) and a "bloom" event (sensitivity).

The simulated data gave evidence that the autologistic model exhibits higher specificity in
case of a less frequent bloom episode and higher sensitivity as bloom episode becomes more
frequent. Model I showed similar specificity and sensitivity: properties as Model 2. The
sensitivity property of the ordinary logistic model decreases as bloom episodes become more
frequent. This result makes the two proposed model superior compared to an ordinary

..
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logistic model. Thus inclusion of spatial parameter to the logistic model results improvement
in its ability to classify binary events.
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